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Fingerprint Recognition by Combining
Global Structure and Local Cues
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Abstract—As an important feature, orientation field describes
the global structure of fingerprints. It provides robust discrimi-
natory information other than traditional widely-used minutiae
points. However, there are few works explicitly incorporating this
information into fingerprint matching stage, partly due to the dif-
ficulty of saving the orientation field in the feature template. In this
paper, we propose a novel representation for fingerprints which
includes both minutiae and model-based orientation field. Then,
fingerprint matching can be done by combining the decisions of
the matchers based on the global structure (orientation field) and
the local cue (minutiae). We have conducted a set of experiments
on large-scale databases and made thorough comparisons with
the state-of-the-arts. Extensive experimental results show that
combining these local and global discriminative information can
largely improve the performance. The proposed system is more
robust and accurate than conventional minutiae-based methods,
and also better than the previous works which implicitly incor-
porate the orientation information. In this system, the feature
template takes less than 420 bytes, and the feature extraction and
matching procedures can be done in about 0.30 s. We also show
that the global orientation field is beneficial to the alignment of
the fingerprints which are either incomplete or poor-qualitied.

Index Terms—Classifier fusion, fingerprint recognition, finger-
print representation, orientation field.

I. INTRODUCTION

NOWADAYS, more and more important applications are
based on fingerprint recognition [especially the auto-

matic fingerprint identification system (AFIS)] [1], [2], such
as electronic personal identification card, e-commerce and
various items on the privacy and security of information. These
applications often face such a large population that it would
probably be a major challenge for the premise of fingerprint
identification, i.e., the individuality of fingerprints. In fact, that
fingerprint being one kind of testimony has been challenged
under Daubert in more than 40 court cases to date since the
USA versus Byron Mitchell case in 1999 [3]. In most current
AFIS systems, only a limited part of discriminative features are
utilized [1]. It is believed that incorporating more discrimina-
tive information available on fingerprint images into matching
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stage can strongly reinforce the individuality of fingerprints
and improve the performance for fingerprint systems on large
scale databases.

Fingerprints are graphical patterns of ridges and valleys on
the surface of fingertips. One kind of widely-used features is
called minutiae, which is usually defined as the ridge ending
and the ridge bifurcation. Various methods based on the minu-
tiae-based fingerprint representation were proposed [4], [5].
Despite its simplicity and efficiency in storage, minutiae-based
representation has its drawbacks in practical usage. First, as a
kind of local features, the minutiae is difficult to be extracted
robustly due to various factors such as large displacement,
different pressure, noise, etc., especially on the fingerprints
with poor quality or collected on the spot. The spurious (falsely
extracted) minutiae will degrade the performance seriously [6].
Second, to analyze the individuality of fingerprints, Pankanti et
al. [7] proposed a mathematical model based on minutiae points
with the assumption that minutiae points are independent. Tan
and Bhanu [8] extended this work to the two-point or three-point
pattern matching and utilized the ridge distance information.
Their conclusions also show that only using minutiae points
is not strong enough to hold the uniqueness of fingerprints,
and incorporating more discriminatory information can largely
strengthen this scientific basis for fingerprint recognition.

In last several years, many researchers proposed to use other
features for fingerprint matching beside minutiae [1]. Some
approaches extracted and used the ridge patterns (shape and
frequency) as features for matching [9], [10], and some other
methods performed correlation-based matching at the intensity
level with the entire images [11], [12]. Recently, Tico and Ku-
osmannen [13] built a minutiae descriptor for each minutiae,
which consists of the original minutiae point and a set of local
orientation values uniformly sampled around this point. The
matching algorithm based on these minutiae descriptors was
reported to have better performance than before. Jain et al. [6]
proposed a novel feature called FingerCode. They first detected
the reference point and extracted the region of interest around
it, then filtered the image with a bank of Gabor filters with dif-
ferent orientations. The filtered results are discretely coded as
the feature, and combined with the minutiae for final decision.
This method implicitly used the global orientation information.
To avoid its sensitivity to the reference point detection, Ross
et al. [14] proposed to use the entire filtered images, called
“ridge feature map,” as the features, and combined them with
the minutiae as a hybrid matcher. All three of these algorithms
need large storage for saving the additional features in the
fingerprint template, especially the hybrid matcher and the
minutiae descriptor.
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One important kind of features in fingerprints is the orien-
tation field. It is defined as a matrix whose elements are the
ridge direction at the corresponding pixel (block) in the original
image. The direction is defined in instead of . The
orientation field directly describes the global structure of the fin-
gerprint ridge pattern. It has been used for image enhancement
in the preprocessing stage [15] and fingerprint type classifica-
tion (indexing) [16]. As a kind of global features, the orienta-
tion field has many advantages over the minutiae: 1) it is almost
continuous and smooth everywhere except those regions near
the singular points, which makes it more robust to be extracted
and less sensitive to the noise; 2) compared with the minutiae,
it is less sensitive to the image deformation due to the skin con-
dition, the pressure, etc. Few works, as far as the authors know,
utilized its discriminant information for fingerprint recognition.
This is partly due to the difficulty of storing the entire orienta-
tion field in the feature template.

In this paper, we present an intuitive representation for
fingerprints which preserves the whole orientation field in the
template besides minutiae and other features. On average, it
needs less than 420 bytes to store all the information, and
feature extraction and matching can be done in about 0.30 s
per fingerprint, which makes it suitable for large-scale online
processing. It can be extended further by incorporating more
features available in the images such as ridge density map.
Based on this representation, fingerprint matching is performed
by combining the global structure (orientation field) and the
local cues (minutiae). We have conducted a set of experi-
ments on two databases (FVC’2002 [1] and THUVLAB),
and made thorough comparisons with the state-of-the-arts.
Extensive experimental results show that incorporating these
local and global discriminant information can largely improve
the performance. It shows that our system is more robust and
accurate than conventional minutiae-based methods, and it
also outperforms the previous methods proposed in [6], [14].
Moreover, we show that the global orientation field can also be
used to register the fingerprints which are either incomplete or
poor-qualitied (e.g., the latent prints as left on the spot).

The paper is organized as follows. In Section II, we briefly
review and analyze several kinds of orientation field models
proposed in previous works. In Section III, we propose the fin-
gerprint representation with minutiae and orientation field. The
matching algorithm combining both the local minutiae feature
and the global orientation field feature is presented in Section IV.
The experimental results for fingerprint matching are listed in
Section V. Finally, we present another application of the global
orientation field for fingerprint alignment in Section VI and con-
clude in Section VII.

II. MODELS FOR ORIENTATION FIELD

Suppose the orientation field is denoted by , most
of the models are built on the vector field,

, which is almost continuous everywhere except
at the regions around the singular points (cores and deltas).
There are two ways to model a vector field mathematically.
One is to directly model it in the complex domain, while the
other is to model its real part and imagery part respectively in
the real domain.

For the first case, Sherlock and Monro [17] proposed a
so-called zero-pole model based on the singular points, which
takes the core as zero and the delta as a pole in the complex
plane. The influence of a core , is for point

, and that of a delta , is . The orientation
at , is the sum of the influence of all cores and deltas, i.e.,

(1)

where , is a constant to be decided. Vizcaya
and GerHardt [18] had made an improvement (called piece-
wise-linear model) using piecewise linear functions around sin-
gular points to adjust the zero and pole’s behavior. The influ-
ence functions are changed to be and

for cores and deltas respectively, where
and are piecewise linear functions. The orientation

model is then formulated as

(2)

Both of these models only depend on the singular points and
thus the modeling abilities are rather limited. We have proposed
a so-called rational model [19] which add some pseudozeros
and pseudopoles as the control points to adjust the original zero-
pole model. This rational model is much more general and can
also be used when there is no singular point. The formula is as
follows:

(3)

where , , are the parameters. The
pseudozeros are the roots of the additional polynomial in the
numerator and the pseudopoles are the roots of the additional
polynomial in the denominator.

For the second case, we have proposed a so-called combina-
tion model [20] which models the real part and the imagery part
of the vector field with two bivariate polynomials. To improve
the modeling in the noncontinuous regions around the singular
points, we impose a point-charge model for each singular point.
The formula is as follows:

(4)

where the parameters are
, , , .

, , are the functions only related
to the singular points, which are formulated as
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where

and is the effective radius for the -th singular point which
is a predefined constant. is “ ” if -th singular point
is a core, otherwise is “ .” is the order of the bivariate poly-
nomial, i.e., the highest order term is . is the number
of singular points. From the above formulas, the combination
model is more general than the other three models and has the
strongest ability for modeling. We have shown that this model
does have good performance in the computation of the orienta-
tion field [21].

III. PROPOSED FINGERPRINT REPRESENTATION

In this section, we propose a fingerprint representation in-
cluding both the global structure (orientation field) and the local
cues (minutiae). As shown in Fig. 1, it contains three parts: the
orientation field model, the minutiae (and the singular points if
available), and the effective region where the fingerprint ridge
pattern exhibits. The minutiae can be extracted by using conven-
tional methods [1], [4], [5], [21]. Only the positions of the minu-
tiae are needed to be stored since the directions of the minutiae
can be known from the orientation field model. The effective re-
gion, denoted by , is extracted by computing the mean and the
variance of the intensity value on each block and doing simple
binarization (an effective block should have the mean in [2,220]
and the variance greater than 6 in our study). A post-processing
step including dilation and erosion is made to remove some iso-
late points and fill large holes. It is then simplified as a -vertex
polygon for storage. These vertexes are defined as the crossing
points between the boundary of and the equiangular radial
rays from the center of .

We mainly discuss the model-based representation for the ori-
entation field in the rest of this section. To estimate the
parameters for the models, first we compute the original ori-
entation field, , extracted by using the method similar
with those in [5], [22]–[24]. After that, weighted least square
(WLS) method is used to estimate these parameters by singular
value decomposition (SVD) either in the complex domain for
the rational model [19], or in the real domain for the combi-
nation model [21]. For numerical stability, the coordinates of

are normalized into with the origin centered in
the image. In practice, researchers usually compute the orienta-
tion value for each block instead of each pixel [1]. In all of
our experiments, is set as 4 pixels empirically, and
pixels if the -th singular point is a core and 40 pixels for a delta.

As shown in (3) and (4), both of these models require the
singular points beforehand. However, it is not easy to detect the
singular points robustly and accurately [6], [21], especially in
some poor-qualitied fingerprints with creases, scars, etc. In the

Fig. 1. Fingerprint representation with global and local features. (a) original
image, (b) minutiae and singular points, (c) polygon-based effective region, and
(d) model-based orientation field.

case that singular points are not available for detection at all,
two modified models can be used, which are formulated as

(5)

and

(6)

They are denoted as rational model II and combination model II.
As expected, these models will not perform as well as the former
ones at the regions around the singular points. But they have less
parameters and are more robust when the singular points can not
be detected satisfactorily.

The required storage for this representation is rather small.
It costs bytes to store the -vertex polygon for . For the
orientation field model, there is coefficients for
the combinational model and coefficients for the rational
model (in the complex domain), where is the polynomial’s
order and is the number of singular points. We have analyzed
the numerical rounding-off errors and proved that 4 bytes are
accurate enough for storing each parameter. Besides, it costs
bytes and bytes to store the positions and the types of the
singular points, respectively. The minutiae need bytes to
store their positions, where is the number of the minutiae.
The total storage for this representation will be

(7)

For most fingerprints, (i.e., two cores and two deltas),
and the average minutiae number for one fingerprint, , can
be assumed to be less than 80 [1], [2], [7]. and are set
empirically as , and . Therefore, we need at
most 417 bytes for storing the minutiae, the whole orientation
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field, the effective region and the singular points. This storage is
much smaller than that in previous works (see Table III for de-
tails) while we record more information available in fingerprint
images. The features can be extracted in real-time (about 0.30
s per fingerprint without optimization). Finally, we would like
to emphasize that: after modeling, the orientation field is more
stable and resistant to noise [21], and thus the discriminatory
information is expected to be strengthened instead.

IV. FINGERPRINT MATCHING

In this section, we describe fingerprint matching by com-
bining both the local cue (minutiae) and the global structure (ori-
entation field). For two given fingerprints denoted with and

, we assume that they have already been aligned properly with
the minutiae features (details about the alignment algorithms are
referred to Section VI). The intersection of the effective regions
can be defined as . We first discuss the matching
only based on the orientation field, and then discuss how to com-
bine it with conventional minutiae-based matching algorithms.
To compare different orientation models, similarity functions,
and fusion strategies, we have carried a set of experiments on a
training database (see Section V for details). The definitions of
performance measurements are given as follows.

If the two fingerprints of a given matching are from a same
finger, it is a genuine matching, otherwise an imposter matching.
The performance of a biometric system operating in a verifica-
tion mode can be specified in terms of false acceptance rate
(FAR) and false rejection rate (FRR). Given a threshold, FAR
is defined as the percentage of those imposter matchings whose
scores are greater than the threshold, and FRR is defined as the
percentage of those genuine matchings whose scores are less
than the threshold. The receiver operating curves (ROC) plot-
ting FAR versus FRR under different thresholds is often used to
evaluate the system’s performance. A practical decision scheme
is usually established to choose a threshold which minimizes
FRR while keeping a given FAR.

The major challenge for various fingerprint verification algo-
rithms is how to reduce FRR when FAR is lower than a required
value. For simplicity, we denote as the value of FRR
when . The typical values we are concerned about
are , and . These values, generally
speaking, are more meaningful than the equal error rate (EER)
in practical AFIS systems (e.g., in a real fingerprint verification
system for high security such as military organizations, it is a
standard requirement that FAR should be lower than 0.01% [2]).

A. Matching Based on Orientation Field

The similarity (matching score) between the orientation fields
of and is defined as

(8)

where is the area of the intersection of the effective
regions, and is a similarity function defined in [0,1].

is the normalized difference between the orientation

TABLE I
RESULTS WITH DIFFERENT SIMILARITY FUNCTION s(x) DEFINITION

values at the point in and , which is formulated
as follows:

if

otherwise
(9)

where

Selecting Similarity Function: To estimate the optimal simi-
larity function , we use the method similar with that in [13].
The optimal is defined as the one that maximizes the sim-
ilarity between the matched fingerprints while minimizing the
similarity between the nonmatched fingerprints. It can be for-
mulated as follows:

(10)

where is the hypothesis that the two blocks with the nor-
malized orientation distance are not corresponded (i.e., non-
matched), and is the hypothesis that they are corresponded
(i.e., matched). and are the corresponding
conditional probability density functions (p.d.f), which can be
estimated on the training database. Based on the observation that

is nearly the uniform distribution and is al-
most the exponent distribution, as in [13], the optimal similarity
function can be derived as

(11)

where is a constant. The mean is set as 1/10 empirically, and
thus .

We have compared the above function with several other simi-
larity function definitions on the training database. Table I shows
the performances of the combination model based orientation
field classifier using different similarity functions. The results
show that the exponent function, , works best, and
thus it is chosen for all of the experiments in this paper. The
same conclusion can also be drawn for the other kinds of orien-
tation field models.

Selecting Orientation Field Model: We have compared the
performances of the classifiers combining minutiae and orien-
tation field using different models, including zero-pole model,
piecewise linear model, combination model, rational model,
combination model II and the rational model II on the training
database. The ROC curves are shown in Fig. 2. We have tried
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Fig. 2. ROC curves for the classifiers combining minutiae and orientation field
using different models.

all of classifier fusion strategies mentioned below and selected
the best ROC curve for each model.

The experimental results show that combination model and
combinational model II have the best performance. Rational
model and rational model II also have satisfactory performance
than the conventional minutiae-based classifier. Zero-pole
model and piecewise linear model do not perform well. The
reason we found is that these models rely heavily on singular
points detection. Falsely detected singular points often occurs
on the images which are seriously blurred or containing a lot
of creases in the databases. Although combination model is
also related to the singular points, it can tolerate false singular
points detection in some sense [21], so that it still can have
good performance.

Original Orientation Field versus Model-Based Orientation
Field: Despite the storing advantage of the model-based orien-
tation field representation, it is interesting to study the influence
of the modeling procedure on the discriminatory information of
the orientation field. Two matching experiments are carried on
the training database, one of which used the extracted original
orientation fields while the other used the model-based recon-
structed orientation fields with combination model.

Fig. 3 showed the distributions of the orientation field
matching scores. The Kullback-Leibler divergence of the dis-
tributions of genuine and imposter matching for the original
orientation fields is 5.70, and that of the model-based orien-
tation fields is 6.89. In Fig. 4, we showed the ROC curves of
the classifier only using the orientation field and the classifier
combining both minutiae and orientation field. For the latter
classifier, we have tried all of fusion strategies mentioned
below and selected the best ROC curve for each case. These
results show that the model-based orientation fields contain
more discriminant information than the original orientation
fields, and thus have better recognition performance. Although
it might not be as accurate as the original orientation field in
some places, the model-based reconstruction is more robust
and more suitable as a kind of feature. Nevertheless, we found
that not every model is more discriminant than the original one,
and the combination model is the best.

Fig. 3. (Solid line) Distributions of the matching scores for genuine matching
and (dash line) imposter matching, with the classifier only using (a) the original
orientation field, and (b) the model-based orientation field with the combination
model.

B. Matching by Combining the Features

Although the global orientation field information is discrim-
inant, it is not enough to identify those fingerprints which are
similar globally while different in details, such as the prints from
twins’ fingers. One natural way to overcome this problem is to
combine the orientation field with the conventional minutiae for
fingerprint recognition, as shown in Fig. 5.

Minutiae-Based Fingerprint Matching: Before combining
the matchers, we briefly review the minutiae-based matching
algorithms. Most of the minutiae-based approaches count the
number of the matched minutiae pairs in , and normalized
it with the minutiae numbers of each fingerprints to get the
matching scores [4], [5], [13]. Two minutiae points are regarded
as matched when: 1) the differences of their coordinates are
less than and for axis and axis, respectively, and 2)
the angular difference between their directions does not exceed

. , and are the constants determined by the exper-
iments. In our study, their values are set as ten pixels, ten pixels,
and 0.175, respectively. Denote the numbers of the minutiae
in are for the fingerprint , for the fingerprint ,
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Fig. 4. ROC curves of the classifier using (a) the orientation field only and
(b) the classifier combining both minutiae and orientation field, with the
original orientation field (dash line) and the model-based orientation field (the
combination model).

Fig. 5. Flowchart of the proposed combination system.

and for the matched minutiae points. The matching score is
usually computed as .

Fig. 6. ROC curves of the classifier using (a) the minutiae only and
(b) combining both minutiae and orientation field, with the GHT method (solid
line) and the adaptive elastic matching algorithm (dash line).

We have implemented two representative minutiae-based
matchers, and fused the orientation-field-based matcher with
each of them. One is the general Hough transformation (GHT)
method [4]; the other is the adaptive elastic matching algorithm
[5]. The latter one transforms the minutiae sets of two finger-
prints into polar coordinates, then sorts them into two “strings”
by the angles, and adopts the elastic string matching algorithm
for minutiae matching.

In Fig. 6, we showed the ROC curves on the training data-
base of the two minutiae-based matchers and their combinations
with a same orientation-field-based matcher (using the combi-
nation model). We have tried all of fusion strategies mentioned
below and selected the best for each case. The results show that:
1) combining with the orientation field information can largely
improve the performance, either for the GHT minutiae matcher
or the adaptive elastic matcher; 2) the GHT minutiae-based
matcher, although simple, has better performance than the adap-
tive elastic matching method on our database.

Classifier Fusion: Many methods have been proposed [25],
[26] for classifier fusion, which can be mainly classified into
three categories: 1) the heuristic rule-based methods such as
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SUM, MIN, MAX, Major Voting, etc. as listed in [25]; 2) the
distribution-based methods such as Neyman–Pearson’s rules
[6], [27]; and 3) the stacking method that trains a suffixal clas-
sifier whose inputs are the outputs of the classifiers to be fused
[28]. In our study, two classifiers (minutiae-based matcher and
orientation-field-based matcher) need to be combined. We have
implemented and compared several strategies for each category
with experiments.

For the heuristic rule category, we implemented the SUM,
MIN, and MAX rules. As pointed out in [25], when there are
only two classifiers to be fused, these three rules are enough
to represent all other fusion rules such as PRODUCT or Major
Voting. For the stacking category, we implemented a method to
train an one-hidden-layer back propagation neural network (BP
Net) as the stacking (fusion) classifier. The number of the hidden
units is set to 5 empirically.

As for the second category (the distribution-based methods),
we have implemented several approaches. Suppose the joint
genuine class-conditional density is denoted by
and the joint imposter class-conditional density is denoted by

, where and denote the matching scores
for the minutiae-based classifier and the orientation field based
classifier, respectively. The Neyman–Pearson rule, which is the
optimal rule under the Bayesian meaning [29], is formulated as
follows:

if
otherwise.

(12)

Jain et al. [6] assumed that and are independent
stochastic variables, thus the joint density function can be
computed as the product of the two one-dimensional (1-D)
distributions

We refer this method as 1-D Neyman–Pearson. A more gen-
eral method is to directly estimate the two-dimensional (2-D)
distributions such as the one proposed in [27] using 2-D Parzen
Window. In order to get more precise performance, instead, we
use 2-D Gaussian mixture model (GMM) to estimate the 2-D
distributions directly. The number of the Gaussian kernels are
set to 5 empirically for both distributions. We use the expecta-
tion maximization (EM) algorithm to estimate the parameters of
the GMM [30]. We refer this method as 2-D Neyman–Pearson.

Among the above classifier fusion strategies, 1-D Neyman–
Pearson, 2-D Neyman–Pearson, and BP net need a training step.
We have evaluated all these classifier fusion strategies on the
training database. Their performances, along with those of the
two separate classifiers, are given in Table II. It shows that: 1) all
of the combined classifiers, except the MAX rule, are better than
either of the separate classifiers. for the combined
classifier can reach 9.7%, while 26.4% for that of the minu-
tiae-based classifier and 41.0% for the orientation field based
classifier, and 2) SUM has the best performance among all these
strategies. The 1-D Neyman–Pearson also works quite well. But
note that this is the training result for 1-D Neyman–Pearson, and
it can not perform as good on the testing database. On the other

TABLE II
RESULTS WITH DIFFERENT CLASSIFIER FUSION METHODS

hand, SUM does not need a training step, and thus its perfor-
mance will remain a high level in different database. Therefore,
we choose this fusion strategy for the rest experiments.

V. EXPERIMENTAL RESULTS

This section is organized as follows. First, the databases used
in this paper are described. Second, we show the experimental
results of fingerprint matching by combining the minutiae and
the model-based orientation field. Finally, the comparisons be-
tween our algorithm and some representative previous works are
presented.

A. Fingerprint Databases

There are two databases used in this paper. The first one,
called THUVLAB, is collected from 191 nonhabituated cooper-
ative subjects using a Digital Persona optical sensor. The image
size is 512 320 pixels with 500 dpi and 256 gray levels.
Among these subjects, 67.2% are younger than 25; 25% are be-
tween the ages of 25 and 50; 7.8% are older than 50. Approxi-
mately 20% of the subjects were female. The total number of fin-
gers we collected is 827. Each finger was pressed eight times in
different days, and thus the whole database consists of

fingerprints. During the data acquisition process, we did
not supervise or assist the subjects in order to simulate the real
situation as best as possible. Therefore, there is a significant
intra-class deformation for many fingerprints, mainly due to the
large translation (up to 200 pixels, average 80 pixels) and
rotation (up to , average ) and serious finger pressure
differences. The fingerprint images in THUVLAB vary in qual-
ities and types. More than 30% are suffering the affection from
deformity, incompleteness, large creases, scars and smudges in
the ridges or dryness and blurs of the fingers. Some fingerprint
samples are listed in Fig. 7.

We randomly selected 400 fingers as the training database,
and used the remaining 427 fingers as the testing database. As
mentioned in Section IV, the training database is used to com-
pare different orientation models, similarity functions and fu-
sion strategies. The testing database is used to evaluate the pro-
posed algorithm and compare it with the previous state-of-the-
arts. For each finger, each two of its eight prints are matched.
This generates genuine matchings. Con-
sidering the efficiency, for two different fingers, we randomly
selected two matchings from 8 8 matchings between them,
and thus generated imposter matchings.
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Fig. 7. Sample fingerprint images in THUVLAB database with various types
and quality.

Fig. 8. ROC curves on the testing database of THUVLAB for the minutiae-
based classifier (dash line), the orientation-field-based classifier(solid line), and
our proposed algorithm (marker line) by combining both the orientation field
and the minutiae.

The second database is FVC’2002 [1], which consists of four
collections and each one contains images. As
reported, DB3 and DB4 are generally much more difficult for
conventional minutiae-based matchers than the other two col-
lections. Therefore, we tested our proposed algorithm on DB3
and DB4 using the experimental protocols proposed in [31].

All the algorithms presented in this paper are implemented
with C++ on a AMD 2200 Hz 512M PC computer, and the time
costs are all estimated on this computer.

B. Matching by Combining Minutiae and Orientation Field

The ROC curves of our proposed algorithm are shown in
Fig. 8 (on the testing database of THUVLAB), and Fig. 9 (on
FVC’2002 database). The ROC curves of the minutiae-based
classifier, and those of the orientation field based classifier are
also shown for comparison. As pointed out in the previous sec-
tion, we use the GHT minutiae-based classifier, and the model-

Fig. 9. ROC curves on FVC’2002 (DB3 and DB4) for the minutiae-based
classifier (dash line), the orientation-field-based classifier(solid line), and our
proposed algorithm (marker line) by combining both the orientation field and
the minutiae.

based orientation field classifier (with the combination model).
The fusion strategy is the SUM rule.

The results show that combining both the global structure
and the local cues will largely improve the performance. These
two kinds of features complement each other. As we expected,
the orientation field based classifier does not perform as well
as the conventional minutiae based classifier. By analyzing the
results, we found that most of the false accepts of the orien-
tation-field-based classifier occur among the same type (class)
of fingerprints, which confirms our assumption that the orien-
tation field captures the global structure information more than
the local details.

In Fig. 10, we presented the distributions of for
all genuine and imposter matchings on the testing database of
THUVLAB. We have computed the correlation coefficients be-
tween the matching scores of the minutiae based classifier, ,
and those of the orientation field based classifier, . The corre-
lation coefficients are 0.53 for the genuine matchings and 0.14
for the imposter matchings, which indicates that the local fea-
ture (minutiae) and the global structure (orientation field) are
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Fig. 10. Distributions of (X ;X ) for genuine and imposter matchings on the
testing database of THUVLAB, where X is the normalized matching score of
the minutiae-based classifier and X is the normalized matching score of the
orientation-field-based classifier.

rather independent. The same conclusion can also be drawn on
FVC’2002 database.

C. Comparison With Previous Works

We have compared our system with two representative works
which also implicitly adopt some orientation information
into the fingerprint matching stage: Algorithm A, the Fin-
gerCode+Minutiae method [6], and Algorithm B, the Hybrid
matcher [14]. We have carefully implemented these algorithms
and tuned the parameters. The minutiae extraction method is
the same for all of tested systems for fair comparison.

Different with Algorithm A and Algorithm B, our approach
explicitly uses the model-based orientation field instead of sev-
eral Gabor-filtered images (or “ridge feature map” in Algorithm
B). Besides less storage and computational cost, one advantage
of our approach is that the model-based orientation field has in-
tuitive physical meaning and is more robust to noises.

First, in Fig. 11(a), we present the ROC curves on the testing
database of THUVLAB of the classifier only using the Finger-
Code, that of the classifier only using the ridge feature map
in the hybrid matcher, and that of the classifier only using the
model-based orientation field. It shows that: 1) the model-based
orientation field is better than the FingerCode and the ridge fea-
ture map when , and 2) the ridge feature map
is slightly better than the FingerCode, since it is more robust
without detecting the reference point.

Second, by combining with the minutiae-based matcher, we
have compared the proposed algorithm with Algorithm A and
Algorithm B in Fig. 11(b). The ROC curves show that our ap-
proach, combining the minutiae and the model-based orienta-
tion field, achieves the best performance. Both these comparison
experiments have also been carried on FVC’2002 database, and
the same conclusions can be drawn.

Finally, some detailed comparison including the requirements
of the feature template storage and the processing time are listed
in Table III. The average minutiae number of each fingerprint,

Fig. 11. Comparison with the previous works on the testing database
of THUVLAB: (a) not combined with the minutiae-based matcher and
(b) combined with the minutiae-based matcher.

TABLE III
COMPARISON WITH PREVIOUS WORKS

, is set as 80, as shown in [1], [2], [7]. As for the hybrid
matcher, there are eight ridge feature maps needed to be saved
with size of 15 15. The storage for FingerCode is quoted from
the original paper. It shows that our approach by combining the
minutiae and the orientation field for recognition is better than
the others for the performance and the template storage required,
while holding a practical processing speed. Another advantage
is that our approach can preserve the whole orientation field
information in the feature template for further usage.

There are also failure cases for our system. Some typical ex-
amples are shown in Fig. 12. In these images, neither the minu-
tiae nor the orientation field can be accurately estimated. None
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Fig. 12. Several typical failure cases for recognitions, in which neither the
minutiae nor the orientation field can be accurately estimated due to serious
noises.

of the two kinds of features can be used to correctly verify the
fingerprints. Some improvements can be made to make it adap-
tive to different situations. For example, the matching score for
the orientation fields can be weighted by the variance within
a block to account for the noisy orientation values occurring
at some blocks. More accurate and robust alignment algorithm
may also be helpful.

VI. OTHER APPLICATION: FINGERPRINT ALIGNMENT

In real systems, fingerprint images often suffer from trans-
lation, rotation, and slightly scaling transformation due to dif-
ferent pressures. Before matching two fingerprint impressions

and , it is necessary to register these two images to bring the
features from in the spatial proximity of their corresponding
counterparts from . It is often assumed that scaling transfor-
mation does not need to be considered [6], [13]. Denote the
geometrical transformation parameters with for the
translation and rotation. After alignment, the point and
its orientation will be mapped to the point and

as follows:

and

In this section, we propose to incorporate the global orienta-
tion field information into the fingerprint alignment stage. It is
another application for the global structure of the fingerprints.
Our approach is proved to be useful for the alignment between
the fingerprints which are either incomplete or containing se-
rious noises such as those latent prints left on the spot. It can be
used to facilitate semi-automatic latent fingerprints recognition,
or perform fingerprint mosaicking [32]. For the alignment be-
tween normal-quality fingerprints, our approach has similar per-
formance with the conventional minutiae-based GHT method
while taking much more time, and is not suitable for large-scale
AFIS system.

A. Previous Fingerprint Alignment Methods

One kind of classical alignment algorithms is based on the
minutiae points by GHT [4], [33]. For any minutiae pair from

two fingerprints, if the two minutiae points are in a predefined
bounding box after transformation estimated by these points,
it will add an evidence to the voting space. The optimal can-
didate in the voting space is the estimation of the alignment
parameters.

Despite its simplicity, the minutiae-based alignment algo-
rithm is limited in some situations. First, spurious minutiae
points will degrade its performance seriously, which often
occur in dry, snatchy fingerprints, or damp, blurred fingerprints.
Since it is based on the voting strategy, spurious minutiae
pairs will cause many false votes and false peaks in the Hough
voting space, leading to the wrong transformation estimation.
Second, in many situations, such as the fingerprints left on the
spot or uncooperative users, the captured image is usually only
a fingerprint fragment. In this case, the area of the common
region and the number of the common minutiae points are
relatively small, and thus it is difficult to accumulate enough
evidence in the Hough transform space to find the genuine
optimal geometric transformation.

Some other algorithms used some more global structures to
do alignment rather than the individual local minutiae points.
Jain et al. [5] proposed to align the minutiae pairs by the cor-
relation between the two ridges from the minutiae pairs, in-
stead of comparing with their positions and angles as the con-
ventional method. Eshera and Sanders [34] proposed to con-
struct an attributed star-like graph where branches constitute
nearest neighbor minutiae. The fingerprint pairs are aligned and
matched by comparing the star-like graphs.

B. Proposed Alignment Method Based on Orientation Field

The proposed alignment method is mainly based on the global
orientation field while using the minutiae to select the initial
candidate transformations. First, we perform the conventional
minutiae-based GHT algorithm. Instead of finding the unique
optimal candidate in the voting space, we keep top- candi-
dates. The best one is selected with the largest matching score,
which is defined as the product of the voting value and the sim-
ilarity between the orientation fields and after transfor-
mation. It is proved to be useful for those poor-qualitied fin-
gerprints with many spurious minutiae or small common re-
gion, keeping a practical speed for real systems. In our study
we choose empirically. The definition of the simi-
larity can be referred as (8).

Some results are shown in Figs. 13 and 14. In Fig. 13(a) and
(b), two fingerprints are captured from the same finger at dif-
ferent time. One of them is damp and blurred at the bottom
and contains many spurious minutiae. The other is incomplete
and also very noisy. We show the extracted minutiae and ori-
entation fields in Fig. 13(c)–(f). The alignment result with the
minutiae-based method and the result with the orientation field
based method are shown in Fig. 13(g) and (h), respectively.
In order to illustrate the correctness of the alignment results,
we manually labeled two corresponding points (marked as the
red circle and the blue square) in the images, and the two im-
ages are blended after geometrical transformation. In Fig. 14,
an on-the-spot fingerprint and another good-quality print of the
same finger are shown in Fig. 14(a) and (b). After aligned by the
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Fig. 13. Fingerprint alignment with the minutiae-based method and the
orientation-field-based method: (a) and (b) are the original images, (c) and (d)
are the extracted minutiae, and (e) and (f) are the corresponding orientation
fields. (g) shows the alignment result based on the minutiae method, while (h)
shows the alignment result based on the proposed method. The corresponding
point pairs (manually labeled) are marked as the red circle and the blue square
[they are overlapped in (h)].

Fig. 14. Live fingerprints cases. (a) the live fingerprint left on the spot; (b) the
good-quality print from the same finger; (c) the alignment result based on the
minutiae based method; and (d) the alignment result based on the proposed
method. The corresponding point pairs (manually labeled) are marked as the
red circle and the blue square.

minutiae based method and the orientation field based method,
the results are shown in Fig. 14(c) and (d), respectively. It shows
that our approach outperforms the conventional minutiae-based
method when the fingerprint’s quality is poor.

To verify the effectiveness of our proposed alignment method
for the poor-qualitied or incomplete fingerprints statistically, we
have conducted some experiments on a subset of THUVLAB

TABLE IV
COMPARISON FOR FINGERPRINT ALIGNMENT

which consists of 100 selected poor-qualitied fingers (two prints
for each finger, and thus 200 fingerprints). These images in-
cludes the incompleteness or noises like smudges, scars, and
creases, which have similar or worse quality as the bottom row
in Fig. 7. Each pair from the same finger is manually aligned
beforehand. The computed transformation parameters are used
as the ground truth.

We have made comparisons with the minutiae-based method
and the alignment algorithm in [5] named as Ridge Correlation.
The estimated transformation, , is compared with the
ground truth, . If the differences are less than
the predefined thresholds, the estimation is considered as cor-
rect, otherwise wrong. The thresholds are set as

, and , which is similar as the criteria of
human inspection. The results are shown in Table IV for the
three alignment methods including the error rate (define as the
percentage of wrong alignment), the average running time, and
the average difference of the estimated transformations with
the ground truth. Since ridge correlation depends on the best-
matched minutiae pair, it is easy to select the false pair consid-
ering a lot of spurious minutiae in the poor-qualitied images,
and thus it does not perform well in this experiment. Our ap-
proach has satisfactory performance. It proves that the global
orientation field is helpful for the alignment, especially for the
poor-qualitied fingerprint images while it takes much more time.
One possible application is to facilitate semi-automatic latent
fingerprints recognition.

VII. SUMMARY AND DISCUSSIONS

In this paper, we present a framework for fingerprint recog-
nition by combining the global structure (the model-based ori-
entation field) and the local cues (minutiae). The fingerprint
representation takes less than 420 bytes to save the orientation
field, the minutiae, the singular points and the effective region
mask. An ensemble classifier is constructed using the orienta-
tion field and the minutiae as features for fingerprint matching.
Experimental results show that our proposed method is better
than the conventional minutiae-based method and the previous
works which also use some complementary information for
matching. We can also conclude that the model-based recon-
structed orientation field is more robust and discriminative than
the original orientation field while it needs few bytes to store.
It can be used for further fingerprint processing, matching or
indexing.

Besides, we proposed a novel fingerprint alignment method
with the minutiae and the orientation field. This method, while
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taking much more time, is effective for poor-qualitied finger-
prints or incomplete fragments of fingerprints. It can be used to
facilitate semi-automatic latent fingerprints recognition.

Representing fingerprints with a complete set of comple-
mentary features is not only important for storing but also very
helpful for recognition. The global-and-local representation
framework can be extended further to include some other global
or local features available in the fingerprint images such as
the ridge density map. From a scientific view, the performance
limit of the fingerprint matching algorithm is determined by
fingerprint individuality. Previous works, such as [7] and [8],
have proposed some models to estimate the individuality of the
fingerprints assuming that each minutiae is independent with
positions and orientations. The assumption, however, is not
completely correct, since the orientations of the minutiae are
actually related to each other because they are determined by
the global ridge patterns. Using the whole orientation field as a
kind of discriminant feature is helpful to estimate the individu-
ality more precisely. Furthermore, we believe incorporating the
whole orientation field into matching stage can reinforce the
individuality of fingerprints.
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